ECE 220/221 Network Analysis I/Lab
Fall 2017 Syllabus
ECE 220

Course ID: ECE 220
Title: Network Analysis I
Career: Undergraduate
Credit Hours: 3

Description: Corequisite: ECE 221 (Network Analysis I Lab). Corequisite or Prerequisite: ENGR 205 (Differential Equations for Engineering). Prerequisite: PHYS 299 (Introductory Electricity, Magnetism and Light). Enrollment restricted to Electrical and Computer Engineering students only, or with permission of the Electrical and Computer Engineering Department Chair. Topics include basic circuit laws, circuit solving methods, independent and dependent sources, resistance, inductance, capacitance, introduction to operational amplifiers, Thevenin's Theorem, superposition, first and second order circuits, power, energy, AC circuit analysis using impedance, phasors, and the power triangle, and balanced three-phase power, and critical thinking.

Note: Tablet PC Required

Location: Davidson Hall 107
Time: Monday, Wednesday, and Friday at 9:00 AM

Instructor: Dr. Karla C. Welch
 Lutz Hall 448
 852-3622
 karla(dot)welch(at)louisville(dot)edu

Recommended Text: J.W. Nilsson and S.A. Riedel, Electric Circuits,
Any (8th, 9th, 10th, etc.) edition, Pearson

Required Text: Supplement for ECE 220/221 Network Analysis I & Lab,
University of Louisville (Coursepack), Fall 2017,
available at Gray’s College Bookstore, 1915 S 4th St, Louisville, KY

Web Sites: Content & Tutorials: http://raise.spd.louisville.edu/EE220/220home.htm
Grades, Files, & E-mail: http://blackboard.louisville.edu
Grades: Quizzes (12 @ 20-30 minutes) 60%
Online Tutorials (21) 15%
Final Exam 25%
Total 100%

Make-up assignments will only be arranged in the case of documentable excused absences (e.g., illness with a doctor's note, university-sanctioned event).

Bonus points may be awarded from time to time for various activities.

Grades will not be curved and will be assigned according to the following chart:

<table>
<thead>
<tr>
<th>Net %</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>96 - 100</td>
<td>A+</td>
</tr>
<tr>
<td>93 - 95.99</td>
<td>A</td>
</tr>
<tr>
<td>90 - 92.99</td>
<td>A-</td>
</tr>
<tr>
<td>86 - 89.99</td>
<td>B+</td>
</tr>
<tr>
<td>83 - 85.99</td>
<td>B</td>
</tr>
<tr>
<td>80 - 82.99</td>
<td>B-</td>
</tr>
<tr>
<td>76 - 79.99</td>
<td>C+</td>
</tr>
<tr>
<td>73 - 75.99</td>
<td>C</td>
</tr>
<tr>
<td>70 - 72.99</td>
<td>C-</td>
</tr>
<tr>
<td>66 - 69.99</td>
<td>D+</td>
</tr>
<tr>
<td>63 - 65.99</td>
<td>D</td>
</tr>
<tr>
<td>60 - 62.99</td>
<td>D-</td>
</tr>
<tr>
<td>00 - 59.99</td>
<td>F</td>
</tr>
</tbody>
</table>

Samples of Work for Assessment:

Copies of selected papers will be made and kept in departmental files for the purpose of accreditation-related assessment.

Objectives/Outcomes:

This course will give the student basic knowledge in circuit analysis that will be the foundation of all future courses in the department. Students who complete this course will show competence and knowledge in the analysis of elementary linear circuits and will be able to:

- Practice ethics in personal and professional behavior.
- Demonstrate a basic understanding of the concepts of charge, current, voltage, energy, and power in circuit analysis.
- Use derivatives and integrals to solve for voltages and currents in circuits with inductors and capacitors.
- Use Kirchhoff’s laws, mesh current techniques, and node voltage methodology to develop mathematical equations and solve for unknowns in simple DC circuits (e.g., constant 5V, 2A, etc.).
- Use Kirchhoff’s laws, mesh current techniques, and node voltage methodology to develop mathematical equations and solve for unknowns in
simple AC circuits (e.g., sinusoids, $5\cos(30t+27)\,V$, $2\cos(400t-52)\,A$, etc.).

- Understand the use of Thevenin’s theorem and superposition techniques to solve circuits.
- Solve time boundary problems for 1st order transient circuits (e.g., one inductor or one capacitor).
- Analyze 2nd order transient circuits (e.g., both an inductor and a capacitor) for damping conditions and unknown voltage or current functions.
- Demonstrate a basic understanding of phasors for AC circuit analysis.
- Perform power calculations using the power triangle.
- Apply capacitors to correct power factor.
- Analyze balanced three-phase power systems.
- Analyze simple circuits containing ideal operational amplifiers.
- Demonstrate critical thinking skills.

Course Revisions: The instructor reserves the right to revise this syllabus at any point during the semester. If such a revision occurs, students will be notified, either by e-mail or during a scheduled class session.

Coverage: The entire Coursepack will be covered. Reference material from Nilsson and Riedel’s textbook covers chapters 1-11.

Office hours: MW: 2:00-3:00pm (tentative; poll to be taken during semester)
My regular office hours will start on Monday and Wednesday afternoons. A poll will be taken during the semester to vet other time slots. However, you can call my office or e-mail me a time that works for you to discuss the class.

Honesty: Students are expected to maintain high standards of integrity. Submitting assignments that are not your original work, because of copying or plagiarizing, and all other forms of academic dishonesty are forbidden and will incur harsh penalties. If you use a calculator that has alphanumeric and/or formulaic storage, it may contain no ECE 220 related materials during quizzes and exams.

Practice Homework: Students should complete all homework problems for practice with the material. Homework problems and solutions are posted under the “Practice Homework” section of Blackboard. Homework problems can be solved at the discretion of the student; these assignments will be neither graded nor collected; they exist solely for the purpose of practice. However, completion of these assignments by each student is highly encouraged, as the problem sets will closely mimic topics and problems on graded assignments.

Tutorials: Online tutorials are assigned for each lesson. You may repeat a tutorial as often as you like (before the deadline for full credit; late penalties of 20 points/day apply after the deadline) to improve your grade. The tutorials use pop-up windows. If your browser uses a pop-up blocker, the blocker must be disabled. Furthermore, the tutorials use Javascript; you must "allow blocked content" in your browser or the tutorials will not work.
Calculators: You are encouraged to obtain a high quality scientific calculator for this course. The calculator should have complex number manipulation capability (rectangular to polar conversion alone is not sufficient). The TI-83 meets this requirement, but the TI-89 has an additional useful feature of solving simultaneous complex equations. You may not use a laptop, cell phone, or similar device as a calculator during quizzes and exams.

Computer Accounts: If you do not already have an account for ECE networked computers, it may be useful to get one. Provide to Chuck Sites (charles.sites@louisville.edu), 502-852-7020, your information as requested on the form that can be found on the following link: http://www.ece.louisville.edu/doc/forms/ECE_computer_account_form.pdf. You will need this access to log-on to department PCs, or you can download ORCAD to your tablet.

Religious Holidays and Approved Absences: The class schedule may, in some instances, conflict with work-restricted religious holidays of some students. There are other approved activities that may take place off-campus and keep you from attending class. You are encouraged to meet with your instructor early in the term to resolve any such conflicts. Give notice to your instructor as soon as possible so temporary alternative schedules can be resolved.

Title IX/Clery Act Notification: Sexual misconduct (including sexual harassment, sexual assault, and any other nonconsensual behavior of a sexual nature) and sex discrimination violate University policies. Students experiencing such behavior may obtain confidential support from the PEACC Program (852-2663), Counseling Center (852-6585), and Campus Health Services (852-6479). To report sexual misconduct or sex discrimination, contact the Dean of Students (852-5787) or University of Louisville Police (852-6111).

Disclosure to University faculty or instructors of sexual misconduct, domestic violence, dating violence, or sex discrimination occurring on campus, in a University-sponsored program, or involving a campus visitor or University student or employee (whether current or former) is not confidential under Title IX. Faculty and instructors must forward such reports, including names and circumstances, to the University’s Title IX officer.

For more information, see http://louisville.edu/hr/employeerelations/sexual-misconduct-brochure.

Disabilities: Any student who has a disability that may prevent him/her from fully demonstrating his/her abilities should contact the instructor during the first or second week of classes to discuss accommodations necessary to ensure and facilitate the student’s full participation in the course. Students are asked to supply a letter from the Disability Resource Center, certifying their eligibility, and other documentation, as needed, which will assist in planning of modifications. The Disability Resource Center (DRC) may be reached at the following web address: http://louisville.edu/disability/. Students are also able to contact the DRC by telephone: (502) 852-6938.
Tutoring: Extra help in this class may be obtained from the REACH (Resources for Academic Achievement) center, http://www.reach.louisville.edu/. REACH will provide one hour of tutoring per week per student. To get more time per student, you can study with other students as a team.

ECE 221

Course ID: ECE 221
Title: Network Analysis I Laboratory
Career: Undergraduate
Credit Hours: 1

Description: Corequisite: ECE 220. Corequisite or Prerequisite: ENGR 205. Prerequisite: PHYS 299. Enrollment restricted to Electrical and Computer Engineering students only, or with permission of the Electrical and Computer Engineering Department Chair. An introductory laboratory with experiments in the use of measurement instruments and the measurement of network characteristics.

Location: WS Speed 204
Instructors: Dr. Karla C. Welch
Lutz Hall 448
852-3622
karla(dot)welch(at)louisville(dot)edu

Teaching Assistant: TBA

Textbooks: 1) Boylestad and Kousourou, *Experiments in Circuit Analysis*, 12th or 13th Edition (only 1 required per group; See Teamwork below)

2) Coursepack: Additional experiments, including software-based experiments using OrCAD, are printed as part of the Coursepack.

Lab Rooms: WS Speed 204 for Hardware Labs
Work on Personal Tablet, meet in WS 204, for Software Labs

Complete Request to Download OrCAD 16.6 Lite Software (All products, download): http://www.orcad.com/buy/try-orcad-for-free

Course Revisions: The instructor reserves the right to revise this syllabus at any point during the semester. If such a revision occurs, students will be notified, either by e-mail or during a scheduled class session.
Teamwork: **Only one of Boylestad and Kousourou’s lab textbook needs to be purchased per group.** Before the first lab session, you will choose your lab team. Some teams may be assigned in order to achieve two- or three-person teams. You will work in teams for the purpose of collaborating on lab experiments and reports. The team turns in one collaborative lab report, and each team member receives the same grade. To verify that each team member has significantly contributed to the lab work, the team member’s name will be included on the collaborative lab report.

Any additional information regarding teams will be covered in class.

Grades: 14 Lab Experiments (equally weighted), occasional quizzes possible. Grades will not be curved and will be assigned according to the following chart:

<table>
<thead>
<tr>
<th>Net %</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>96 - 100</td>
<td>A+</td>
</tr>
<tr>
<td>93 - 95.99</td>
<td>A</td>
</tr>
<tr>
<td>90 - 92.99</td>
<td>A-</td>
</tr>
<tr>
<td>86 - 89.99</td>
<td>B+</td>
</tr>
<tr>
<td>83 - 85.99</td>
<td>B</td>
</tr>
<tr>
<td>80 - 82.99</td>
<td>B-</td>
</tr>
<tr>
<td>76 - 79.99</td>
<td>C+</td>
</tr>
<tr>
<td>73 - 75.99</td>
<td>C</td>
</tr>
<tr>
<td>70 - 72.99</td>
<td>C-</td>
</tr>
<tr>
<td>66 - 69.99</td>
<td>D+</td>
</tr>
<tr>
<td>63 - 65.99</td>
<td>D</td>
</tr>
<tr>
<td>60 - 62.99</td>
<td>D-</td>
</tr>
<tr>
<td>00 - 59.99</td>
<td>F</td>
</tr>
</tbody>
</table>

Objectives/Outcomes: This course will give the student practice in applying knowledge of circuits by wiring and testing various circuits and measuring their properties. Students who complete this course will be able to:

- Use laboratory instruments for circuit measurement.
- Demonstrate basic proficiency in building circuit experiments, gathering data, and interpreting data.
- Use OrCAD to draw circuits, simulate them, and interpret the results of those simulations.
- Work successfully in engineering teams.

Missed Experiments: Make-up experiments will only be arranged in the case of documentable excused absences (e.g., illness with a doctor's note, university-sanctioned event).